On Adaptive Wavelet Boundary Element Methods
نویسندگان
چکیده
منابع مشابه
Fast Wavelet Transforms for Matrices Arising from Boundary Element Methods
For many boundary element methods applied to Laplace's equation in two dimensions, the resulting integral equation has both an integral with a logarithmic kernel and an integral with a discontinuous kernel. If standard collocation methods are used to discretize the integral equation we are left with two dense matrices. We consider expressing these matrices in terms of wavelet bases with compact...
متن کاملAdaptive Galerkin boundary element methods with panel clustering
In this paper, we will propose a boundary element method for solving classical boundary integral equations on complicated surfaces which, possibly, contain a large number of geometric details or even uncertainties in the given data. The (small) size of such details is characterised by a small parameter and the regularity of the solution is expected to be low in such zones on the surface (which ...
متن کاملAdaptive boundary element methods for optimal convergence of point errors
One particular strength of the boundary element method is that it allows for a high-order pointwise approximation of the solution of the related partial differential equation via the representation formula. However, the high-order convergence and hence accuracy usually suffers from singularities of the Cauchy data. We propose two adaptive mesh-refining algorithms and prove their quasi-optimal c...
متن کاملAdaptive Domain Decomposition Methods for Finite and Boundary Element Equations
The use of the FEM and BEM in diierent subdomains of a non{overlapping Domain Decomposition (DD) and their coupling over the coupling boundaries (interfaces) brings about several advantages in many practical applications. The paper presents parallel solvers for large-scaled coupled FE{BE{DD equations approximating linear and nonlinear plane magnetic eld problems as well as plane linear elastici...
متن کاملA Posteriori Error Estimation for Adaptive Iga Boundary Element Methods
A posteriori error estimation and adaptive mesh-refinement are well-established and important tools for standard boundary element methods (BEM) for polygonal boundaries and piecewise polynomial ansatz functions (see e.g. the seminal work [1] for the derivation of the weighted-residual error estimator and [5] for convergence even with optimal rates). In contrast, the mathematically reliable a po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Mathematics
سال: 2018
ISSN: 0254-9409,1991-7139
DOI: 10.4208/jcm.1610-m2016-0496